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Abstract—Dispersion and radiation properties of the con-
ductor-backed coplanar waveguide (CPW) with finite ground
planes are analyzed and modeled. A frequency-domain finite-dif-
ference method using the perfectly matched layer absorbing
boundary condition is used as reference. Based on these results,
a closed-form description is derived and implemented into an
existing quasi-static CPW model. This leads to a comprehensive
and efficient CPW description accounting for all relevant effects
from conductor loss to high-frequency dispersion. Additionally,
design rules to avoid parasitic radiation effects are given.

Index Terms—Coplanar waveguide (CPW), leaky waves,
modeling, radiation effects.

I. INTRODUCTION

L EAKAGE phenomena and higher order modes in coplanar
and slot lines have been the subject of investigation for

more than ten years (e.g., [1]–[3]). With commercial systems
reaching the -band, dispersion, and radiation properties of
coplanar waveguides (CPWs) have become essential topics for
practical circuit design. Typical questions, for instance, refer
to design rules for the width of CPW ground planes or proper
values of substrate thickness, given a certain frequency range of
operation.

Most of the publications so far treat coplanar structures on
a suspended (or infinite) substrate [2]–[4] and, in many cases,
with laterally infinite ground planes [3], [4]. The focus in prac-
tical monolithic microwave integrated circuit (MMIC) applica-
tions, however, is on the conductor-backed type and, naturally,
on ground planes of finite lateral extent. Recently, the authors
explained the behavior of this type of CPW in a more qualita-
tive manner [5]. In this paper, modeling equations for the dis-
persion and radiation effects are supplied, which can be applied
for practical circuit design. We expand the quasi-static equiva-
lent-circuit CPW model [6] to include these effects. A radiation
resistance representing the radiation losses of the CPW is
added to the original resistance representing the conductor
losses. The original capacitance in the model is modified in
order to account for dispersion at higher frequencies.

Fig. 1 shows the CPW cross section that the following
considerations are based upon. A conductor-backed (high-re-
sistivity) Si substrate is assumed as an example. Since we
are concentrating on dispersion and radiation effects, metal
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Fig. 1. Cross section of the conductor-backed CPW structure under
investigation (the dimensions and material data are, unless otherwise specified,
" = 11:67, w = 16 �m, s = 12 �m, metal thickness t = 0, w = 80 �m,
h = 200 �m). Further parameters are ground-to-ground-spacing d = w + 2s

and total linewidth w = d + 2w . For full-wave EM analysis (FDFD
method), the structure is enclosed in a box with lateral and top boundaries
realized as the PML.

thickness and material losses are neglected in order to separate
radiation from other loss phenomena. Regarding the dimen-
sions, values typical for millimeter-wave MMICs are chosen
(50- characteristic impedance, 4- m ground-to-ground
spacing). A finite-difference frequency-domain (FDFD) code
using the perfectly matched layer (PML) boundary to simulate
open space [7] was used as a reference for our simplified model.

II. CPW DISPERSION

Applying the FDFD method, a systematic study of the CPW
dispersion properties as a function of dimensions and material
data was performed. CPW effective permittivity
was calculated varying the dimensions , , , substrate thick-
ness , and relative dielectric constant . The objective was
to sort out the important parameters and to describe the depen-
dence of on these quantities by an analytical formula. The
investigation reveals that CPW dispersion is almost independent
of the substrate thickness for the parameter range of practical
interest. Moreover, depends only on the ratio and
on frequency with being normalized to . The quantity

denotes the total width of the CPW and
denotes the ground-to-ground spacing.

The limiting frequency corresponds to the frequency,
where the phase constants of the CPW mode and the first
lateral higher order mode intersect. A simple approximation
is employed, i.e., for the CPW mode, the quasi-static
value is used. For the higher order mode, the
CPW structure is simplified by covering the slots with metal
and introducing a vertical magnetic wall at the outer edge of
the ground metallization. This leads to a rectangular waveguide
cross section with the vertical boundaries being magnetic
walls and a width equivalent to half the total width of the
CPW ( ) [5] (see Fig. 2). Calculating
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Fig. 2. Simplified CPW structure for the calculation of lateral higher order
modes.

the frequency, where of this waveguide equals , one
obtains

(1)

Regarding the dependence on substrate permittivity , we
found, on the basis of FDFD simulations of a large variety of
CPW structures, that a normalization of according to (2)
yields good accuracy. Applying

(2)

Applying (2), a single fitting parameter is left, which can be
easily determined from a log–log plot and depends only on the
ratio (with ). Using our full-wave simulation
data, fitting of yields

(3)

Thus, the CPW high-frequency dispersion can be described
by the following formula (with denoting the quasi-
static value):

(4)

In this way, any quasi-static description can be easily ex-
tended to account for dispersion. In our case, we use the quasi-
static CPW equivalent-circuit model of [6] and implement (4)
by introducing a corresponding modification of line capacitance

.

III. RADIATION FOR INFINITE SUBSTRATE THICKNESS

Studying CPW radiation, one has to distinguish the cases of
finite and infinite substrate thickness, which will be treated in
Sections III and IV, respectively. First, the structure with the
infinite substrate is to be analyzed. In this case, an analytical
approximation for radiation loss can be derived. It is based on

Fig. 3. Reciprocity consideration of an electric line-current source on a
dielectric substrate.

the approach of Rutledge et al. [4], which is adapted here to the
CPW with finite-width ground planes.

Numerical simulations show that, at higher frequencies,
does not vary significantly with substrate thickness . There-
fore, in this range, the expression for infinite may be used as
an approximation for finite as well, which leads to a simpli-
fied formula (see Section IV).

Deriving the analytical model, we follow the common an-
tenna description: first, the field of an infinitesimally small cur-
rent segment is calculated. Given the current distribution, one
then integrates over all segments and, in this way, the total field
and, thus, the radiated power is obtained. In our case, the basic
current segment is an electric line-current source in the -direc-
tion on the dielectric substrate (see in Fig. 3).

A. Fields of the Line-Current Source

Due to the layered structure, the fields of the line current in
Fig. 3 cannot be derived straightforward. Therefore, we start
with the fields of a line current in a homogeneous medium
using cylindrical coordinates . Applying the far-field
approximation, the vector potential of a line source, as in
Fig. 3, reads (see [8])

(5)

denotes the propagation constant of the source
in the -direction, which is equal to that of the guided mode (i.e.,

). The constants and are related by

(6)

which yields . Consequently, the magnetic
and electric fields in the substrate are

(7)

and

(8)

with

The next step is to account for the layered medium. This is
done following the approach of [4]. Applying the reciprocity
theorem to the geometry in Fig. 3, one finds that the field
caused by the current at the dielectric–air interface at

is the same as the field induced by an artificial cur-
rent within the substrate. The latter one is easier to calculate
since the incident field at is given by (8). In
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Fig. 4. Conformal mapping for a CPW with finite-extent ground planes.

order to obtain the total field , reflection and transmission at
the interface need to be accounted for. With being the
transmission coefficient of the component of at the inter-
face [4], one has for the total electric field

(9)

According to reciprocity, is equal to the field gener-
ated by the current source at that we are looking for
with given by (8).

B. CPW Current Distribution

Assuming a CPW with zero-thickness metallizations and
quasi-TEM behavior, the current density for can
be derived from the conformal mapping of the first quadrant
of Fig. 1 into a parallel-plate capacitor, as illustrated by Fig. 4
(see [9])

(10)

with denoting the total current on the right-hand half of the
center strip and the right-hand ground metallization (
and , respectively)

and denoting the complete elliptic integral of the first kind.

C. Integration

The total field arises from the superposition of all current seg-
ments weighted by the actual current distribution. This results
in an integration for the electric field according to (11)

(11)

where the current density follows from (10) and is
nonzero on the strips only. In order to solve the integral in
(11), we split the integration at and use the symmetry

(this integral is referred to as ) as follows:

(12)

For small arguments (as is the case here), the cosine function
can be approximated by the first two terms of its series expan-
sion, which yields

(13)

Since under quasi-TEM conditions the net current vanishes
[see (10)], the first integral in (13) is zero for the CPW and only
the second integral with the square term in needs to be eval-
uated. This is in contrast to the classical case of infinite ground
planes [4], where the first nonvanishing term is the linear one
and not the square one.

D. Radiation Loss and Attenuation

From the total fields, the power loss due to radiation into the
substrate can be calculated as follows:

(14)

This power loss is introduced into the equivalent-circuit
model of the CPW [6] by an additional radiation resistance

in the series branch ( ). Using the
approximation for for in [4]

(15)

we obtain the expression

(16)

with , , ,

, the complete elliptical integral of the first kind ,
and the complete elliptical integral of the third kind .

If direct results on attenuation and not on the radiation resis-
tance are required, attenuation can be calculated from the ratio
of radiated power to the power transmitted on the line.
Note that attenuation of a CPW with finite ground width shows
a dependence in contrast to the attenuation of a CPW with
infinite ground width, which follows a rule.
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Fig. 5. Model used to calculate radiation of a conductor-backed CPW
analytically. Medium 1 refers to the substrate with relative dielectric constant
" , for medium 2 it holds " = 1; thickness h is chosen large compared
to substrate thickness h such that the influence of the top boundary can be
neglected.

IV. RADIATION FOR FINITE SUBSTRATE THICKNESS

In the case of the coplanar structure according to Fig. 1,
leakage occurs due to surface waves on a conductor-backed
dielectric slab of thickness . The leakage starts at a frequency

, where the phase constant of the CPW mode becomes
smaller than that of the first surface wave [1], [9] (note that this
differs from the classical case of a CPW with infinitely thick
substrate, where radiation starts at ). Below , radiation
is zero because the phase constant of the CPW mode is larger
than those of the surface waves and, hence, no coupling occurs:

(17)

In a first approximation, radiation loss of a conductor-backed
CPW can be described by a two-region approach with
being zero below and assuming the value of the case for in-
finitely thick substrate above [see (16)]. This is confirmed by
FDFD simulations, but, as can be expected, accuracy of this
simple approach is crude around . A more accurate descrip-
tion, which is nevertheless efficient enough to be suitable for
circuit design software, is presented below.

The assumptions are similar to those of the model in Sec-
tion III. Fig. 5 illustrates the geometry. An upper magnetic wall
is introduced, far enough away to prevent a parasitic influence.
However, due to the upper boundary, one has a discrete eigen-
mode spectrum, which facilitates analysis. The electric and
magnetic fields are expanded into longitudinal-section electric
(LSE) and longitudinal-section magnetic (LSH) modes [11].
These LSE and LSH modes propagate in the -direction. The
eigenvalue equation of the modes reads (the superscripts
denote the medium according to Fig. 5)

(18)

with

(19)

because, as a consequence of continuity, the propagation con-
stant is identical in substrate and in air (mediums 1 and 2).

Similarly, the eigenvalue equation of the modes is

(20)

with according to (19) with the superscript being re-
placed by .

The eigenvalue equations (18)–(20) cannot be solved ana-
lytically. Thus, an iterative root search procedure needs to be
applied. The problem is that one has to guarantee complete-
ness, i.e., to make sure that all eigenvalues in a given interval
are found. This can be accomplished by applying appropriate
starting values for the root search. Brandis et al. [12] published a
method to generate intervals for such a layered structure, which
contain exactly one eigenvalue. This is applied here to obtain a
reliable and automatized algorithm determining the and

eigenvalues. For details, see Appendix A. Using these
intervals as starting values, the root search is performed by suc-
cessive division of intervals, accounting for possible resonance
points and treating the two possible cases of real and imaginary

separately.
After the eigenvalues have been determined, the prop-

agation constants of the LSE and LSH modes in the - and
-direction are calculated according to (21)

(21)

with as introduced in (5). Only modes with a real
propagate and, thus, contribute to radiation. This corresponds
to being in the range

(22)

Thus far, we know only the properties of the LS modes, but
not their amplitudes, i.e., how strong each of them is excited in
the given structure. This is determined by the -directed cur-
rent line source at the dielectric interface at (see Fig. 5).
Since the eigenfunctions of the LSE and LSH modes are orthog-
onal, the well-known mode-matching procedure can be applied
in order to determine the amplitudes of the LS modes and

, respectively (see Appendix B).
In the last step, power loss of the entire CPW structure due

to radiation in the - and -direction is calculated by inte-
grating over the current density and adding the contribu-
tions of all propagating LSE and LSH modes [see (22)], similar
to the procedure in Section III as follows:

(23)
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Fig. 6. Effective relative permittivity of the CPW in Fig. 1. Comparison of the
analytical model with full-wave FDFD results for finite and infinite substrate
thickness. The frequency limit f of the analytical model [see (1)] is marked.

and denote the highest indexes of the respective
modes satisfying (22). is defined in (10), the solution of
the corresponding integral is closely related to that in (13). As
described in Section III, the power loss can be represented
by a radiation resistance in the equivalent-circuit model.

V. ACCURACY AND LIMITATIONS OF THE EXTENDED

CPW MODEL

In this section, results are to be presented for the new CPW
model, based on the quasi-static formulation of [6], including
high-frequency dispersion and radiation by using (4) and (16)
or (23) for infinite or finite substrate thickness, respectively.

Regarding the limitations, one has to note first that the prac-
tical range of application of the CPW is restricted to frequen-
cies, where interaction with higher order CPW modes can be
neglected. These higher order modes are associated with both
lateral line dimensions and substrate thickness [5]. They lead to
upper frequency limits and , respectively, with

given in (1) and according to (24) as follows:

(24)

This means that both substrate thickness and total linewidth
have to be kept small enough to maintain the desired

single-mode CPW behavior. The analytical dispersion and
radiation descriptions presented in the previous sections are
intended for design purposes and, therefore, focus on this pa-
rameter range as well. With growing frequency, their principal
validity is limited by in (1).

Fig. 6 presents data on effective permittivity for the CPW
structure of Fig. 1. The analytical description of agrees
very well with the full-wave FDFD simulations for both finite
and infinite substrate thickness. A more systematic investigation
yields a maximum deviation of less than 1.5% in (which
means 0.75% in phase constant), determined from a variety of
CPW geometries. This fully satisfies practical design require-
ments.

The corresponding attenuation results are plotted in Fig. 7 in a
double-logarithmic scale. The approach based on the LS-mode
description (23) yields good agreement with FDFD simulations
up to the frequency , where coupling with the first higher

Fig. 7. Attenuation of the CPW in Fig. 1 in double-logarithmic scale (substrate
thickness h = 200 �m). Comparison of FDFD results with those of the model
of Section IV (23) and the description according to (16) in Section III. The
frequency limits [(1) and (24)] of the analytical model are included [f (w )
is equivalent to f in (1)].

Fig. 8. Attenuation of the CPW in Fig. 1 in double-logarithmic scale (infinite
substrate thickness). Comparison of FDFD results with those of the model in
Section III and the version for finite thickness in Section IV (h = 600 �m is
used).

order mode starts and the useful frequency range ends. This val-
idates the new model. As stated in [5] already, a rule for
the frequency is found [see, e.g., (16)]. At frequencies beyond

, accuracy deteriorates, but the principal characteristics are
described further on, though this range should be avoided in
practical circuit design [(24) is violated].

Fig. 7 also provides the results of the model for infinite sub-
strate thickness according to (16). This formula gives a rough
estimation for attenuation in the case of finite substrate thick-
ness as well. However, as can be expected, it leads to consider-
able deviations for frequencies in the vicinity of radiation cutoff

.
In order to explore this in more detail, Fig. 8 presents the

full-wave data for infinite substrate thickness together with the
corresponding model (16) and the finite-substrate description of
(23) assuming a large thickness m. One observes—in
the log–log scale—an almost constant difference between both
models, i.e., both descriptions do not converge for large sub-
strate thicknesses . This discrepancy is found for other geome-
tries with strips of finite width as well, e.g., for the coupled-strip
line. A physical explanation, however, is yet missing. Additional
investigations reveal that the deviations do not occur in the case
of infinite metallization width. From this, one may suppose that
the approach for the transmission coefficient in (15), which is
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Fig. 9. Effective relative permittivity and attenuation of a CPW according to
Fig. 1, but with w = 160 �m, h = 380 �m, gold conductors with thickness
t = 0:8 �m, and a conductivity of 3.5 10 S/m. Comparison of the results of the
new model with those of the previous one and with electrooptic measurements.

taken from [4], is responsible for the inaccuracies. Quantita-
tively speaking, the accuracy of (16) can be significantly im-
proved if we multiply the formula by a correction factor of 1.75.

Tocheckthevalidityof thenewmodel,wecomparedtheresults
to electrooptic measurements performed at the RWTH Aachen,
Aachen, Germany (see [13]). Fig. 9 presents the results together
with those of the initial model [6]. We find that our improved
model describes high-frequency dispersion and loss owing to ra-
diation with good accuracy. The deviations in the low-frequency
range are due to uncertainties in the electrooptic measurement
procedure (transformation from time to frequency domain).

VI. CONCLUSIONS

Using the CPW at -band frequencies and beyond requires
careful design of ground width and substrate thickness in order
to maintain the desired single-mode behavior with small disper-
sion and low radiation loss. In this paper, closed-form expres-
sions for CPW high-frequency dispersion and an analytical de-
scription for radiation loss have been presented. Using these for-
mulas, the available quasi-TEM equivalent-circuit models of the
CPW can be easily extended to cover non-TEM and radiation ef-
fects. The results agree well with full-wave data calculated by
means of a finite-difference method with absorbing boundaries.
The expanded CPW model is numerically very efficient and can
be implemented easily as a user-defined model in conventional
circuit-design software.

APPENDIX A
STARTING INTERVALS FOR THE LSE AND LSH ROOT SEARCH

Applying the approach of [12] to the structure of Fig. 5, one
obtains a series of intervals for , with each of them con-
taining a single eigenvalue. First, we assume a magnetic wall
at the dielectric–air interface separating the structure into two
independent subdomains. The conclusion of [12] is that every
two neighboring eigenvalues of both subdomains include ex-
actly one eigenvalue of the entire structure.

Thus, the interval boundaries for the eigenvalues of the
modes consist of with

and with
and . The values can be transformed into the
corresponding values using (19). The resulting for

and are written into one se-
quence ordered by magnitude. Each neighboring values
of this sequence then form the interval containing exactly one
eigenvalue.

For the modes, the intervals are formed by
with and

with . The remaining part of calculation
corresponds to the case.

APPENDIX B
AMPLITUDES OF THE LSE AND LSH MODES

After some mathematical manipulations, one obtains the fol-
lowing expressions for the amplitudes of the th and

mode, and , respectively, in medium 1 (note that
orthogonality holds only within the LSE and the LSH system,
but not for cross terms):

(25)

and

(26)

with

(27)

(28)

(29)

and

(30)

(31)

(32)
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(33)

(34)

(35)

The thickness of the air layer should be large enough so
that it does not affect the solution . The same con-
sideration holds for the choice of the number of modes
used for the calculation of in (26), which, of course,
cannot be infinity in the numerical calculation. This number

determines how accurate the solution approximates the
line current source. Roughly speaking, the spatial resolution is
equal to the ratio . In our case, a value

m yielded good accuracy while still maintaining
reasonable numerical efforts.
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